Online Non-Parametric Regression

نویسندگان

  • Alexander Rakhlin
  • Karthik Sridharan
چکیده

We establish optimal rates for online regression for arbitrary classes of regression functions in terms of thesequential entropy introduced in [14]. The optimal rates are shown to exhibit a phase transition analogous to thei.i.d./statistical learning case, studied in [16]. In the frequently encountered situation when sequential entropyand i.i.d. empirical entropy match, our results point to the interesting phenomenon that the rates for statisticallearning with squared loss and online nonparametric regression are the same.In addition to a non-algorithmic study of minimax regret, we exhibit a generic forecaster that enjoys the es-tablished optimal rates. We also provide a recipe for designing online regression algorithms that can be computa-tionally efficient. We illustrate the techniques by deriving existing andnew forecasters for the case of finite expertsand for online linear regression.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Use of Two Smoothing Parameters in Penalized Spline Estimator for Bi-variate Predictor Non-parametric Regression Model

Penalized spline criteria involve the function of goodness of fit and penalty, which in the penalty function contains smoothing parameters. It serves to control the smoothness of the curve that works simultaneously with point knots and spline degree. The regression function with two predictors in the non-parametric model will have two different non-parametric regression functions. Therefore, we...

متن کامل

Regression Modeling for Spherical Data via Non-parametric and Least Square Methods

Introduction Statistical analysis of the data on the Earth's surface was a favorite subject among many researchers. Such data can be related to animal's migration from a region to another position. Then, statistical modeling of their paths helps biological researchers to predict their movements and estimate the areas that are most likely to constitute the presence of the animals. From a geome...

متن کامل

Comparison of Gene Expression Programming (GEP) and Parametric and Non-parametric Regression Methods in the Prediction of the Mean Daily Discharge of Karun River (A case Study: Mollasani Hydrometric Station)

Nowadays, the prediction of river discharge is one of the important issues in hydrology and water resources; the results of daily river discharge pattern could be used in the management of water resources and hydraulic structures and flood prediction. In this research, Gene Expression Programming (GEP), parametric Linear Regression (LR), parametric Nonlinear Regression (NLR) and non-parametric ...

متن کامل

Worst-Case Bounds for Gaussian Process Models

We present a competitive analysis of some non-parametric Bayesian algorithms in a worst-case online learning setting, where no probabilistic assumptions about the generation of the data are made. We consider models which use a Gaussian process prior (over the space of all functions) and provide bounds on the regret (under the log loss) for commonly used non-parametric Bayesian algorithms — incl...

متن کامل

Predictive Ability of Statistical Genomic Prediction Methods When Underlying Genetic Architecture of Trait Is Purely Additive

A simulation study was conducted to address the issue of how purely additive (simple) genetic architecture might impact on the efficacy of parametric and non-parametric genomic prediction methods. For this purpose, we simulated a trait with narrow sense heritability h2= 0.3, with only additive genetic effects for 300 loci in order to compare the predictive ability of 14 more practically used ge...

متن کامل

System Identification through Online Sparse Gaussian Process Regression with Input Noise

There has been a growing interest in using non-parametric regression methods like Gaussian Process (GP) regression for system identification. GP regression does traditionally have three important downsides: (1) it is computationally intensive, (2) it cannot efficiently implement newly obtained measurements online, and (3) it cannot deal with stochastic (noisy) input points. In this paper we pre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014